home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Compendium Deluxe 2
/
LSD and 17bit Compendium Deluxe - Volume II.iso
/
a
/
prog
/
asmsrc
/
thesource-7.lha
/
Source
/
NumericalMethods.lha
/
NumericalMethods
/
sqrt.c
< prev
next >
Wrap
C/C++ Source or Header
|
1994-05-27
|
9KB
|
382 lines
/* --------------------------------- sqrt.c --------------------------------- */
/* This is a collection of sqrt(ulong) programs off the net (see later for the
* original notes). I added my own version, eyal(), which uses the standard
* iterative approach. eyal0() is the simple one while eyal() uses a table
* lookup for the initial guess.
*
* Some functions were adjusted so that all truncate in the same way.
*
* Eyal Lebedinsky (eyal@ise.canberra.edu.au)
*/
#if 0
These are the results for running the program on a 486DX50 on
msdos(quickC), msdos(C7.00) and Linux(gcc2.2.2). Note that the ftime on
Linux gives 10ms resolution. The table shows time in 1ms units. All
compiles were done with maximum optimization (best speed options).
The summary line shows what the compiler can contribute (compare qc and c7)
and what the machine capability can do (gcc test done in 32-bit mode).
calling sqrt() 100000 times:
function gcc c7 qc check
null 60 84 120 0
null 60 84 120 0 (acid)
rodent 350 2,818 3,165 21032170
rodent 350 2,921 3,275 74047927 (acid)
grupe 690 3,364 3,681 21032170
grupe 700 3,516 3,826 74047927 (acid)
dj 980 4,389 19,681 21032170
dj 1,050 4,582 20,239 74047927 (acid)
thyssen 1,100 4,462 20,282 21032170
thyssen 1,160 4,643 20,671 74047927 (acid)
kskelm 3,030 14,878 14,625 21032170
eyal0 700 2,099 2,464 21032170
eyal0 830 2,696 3,134 74047927 (acid)
eyal 320 555 802 21032170
eyal 350 625 1,405 74047927 (acid)
====== ====== =======
11,730 51,716 117,490
Original posting:
=================
$From comp.sys.ibm.pc.programmer Tue Oct 8 09:16:35 1991
$Newsgroup: comp.sys.ibm.pc.programmer/3360
$Subject: Summary: SQRT(int) algorithm (with profiling)
$From: warwick@cs.uq.oz.au (Warwick Allison)
$Sender: news@cs.uq.oz.au
$Date: 7 Oct 91 01:20:38 GMT
$Message-Id: <4193@uqcspe.cs.uq.oz.au>
$Path: csc.canberra.edu.au!manuel!munnari.oz.au!bunyip.cc.uq.oz.au!uqcspe!cs.uq.oz.au!warwick
$Reply-To: warwick@cs.uq.oz.au
$Followup-To: comp.sys.amiga.programmer
$Lines: 177
Thanks to all those who responded.
Profiles:
%time cumsecs #call ms/call name
52.4 3.16 99999 0.03 _kskelm
12.1 3.89 99999 0.01 _thyssen
10.8 4.54 99999 0.01 _grupe
10.6 5.18 99999 0.01 _dj
5.3 5.98 99999 0.00 _rodent
All gave the same accuracy except for grupe, which also rounded rather
than truncating.
(I added this to rodent() at slight cost)
Thanks again all,
Warwick
--
_-_|\ warwick@cs.uq.oz.au
/ * <-- Computer Science Department,
\_.-._/ University of Queensland,
v Brisbane, AUSTRALIA.
---------------- code below -----------------
#endif
#include <stdio.h>
#include <stdlib.h>
#if 1
/* This is for msdos
*/
#include "tick.h"
#define GET_TIME (GetLowTickCount()/10L)
#endif
#if 0
/* This is for unix
*/
#include <time.h>
#include <sys/timeb.h>
#define GET_TIME timer_milli()
static unsigned long
timer_milli (void)
{
struct timeb tm;
ftime (&tm);
return (tm.time*1000L + tm.millitm);
}
#endif
/*
This integer sqrt function is about *15* times faster than
the standard double-precision math function under lattice.
It was the result of a thread on comp.graphics a while ago.
I've tested the precise accuracy of it's results up to 600000.
*/
static unsigned long rodent(v)
unsigned long v;
{
register long t = 1L<<30, r = 0, s;
#define STEP(k) s = t + r; r >>= 1; if (s <= v) { v -= s; r |= t;}
STEP(15); t >>= 2;
STEP(14); t >>= 2;
STEP(13); t >>= 2;
STEP(12); t >>= 2;
STEP(11); t >>= 2;
STEP(10); t >>= 2;
STEP(9); t >>= 2;
STEP(8); t >>= 2;
STEP(7); t >>= 2;
STEP(6); t >>= 2;
STEP(5); t >>= 2;
STEP(4); t >>= 2;
STEP(3); t >>= 2;
STEP(2); t >>= 2;
STEP(1); t >>= 2;
STEP(0);
/* if (r<v) return r+1; add for rounding */
return r;
}
static unsigned long grupe(x)
unsigned long x;
{
register unsigned long xr; /** result register **/
register unsigned long q2; /** scan-bit register **/
register int f; /** flag (one bit) **/
xr = 0; /** clear result **/
q2 = 0x40000000L; /** higest possible result bit **/
do
{
if((xr + q2) <= x)
{
x -= xr + q2;
f = 1; /** set flag **/
}
else f = 0; /** clear flag **/
xr >>= 1;
if(f) xr += q2; /** test flag **/
} while(q2 >>= 2); /** shift twice **/
/* if(xr < x) return xr +1; add for rounding */
return xr;
}
static unsigned long kskelm(val)
unsigned long val;
{
register unsigned long rt = 0;
register unsigned long odd = 1;
while (val >= odd) {
val -= odd;
odd += 2;
rt += 1;
}
/* sqrt now contains the square root */
/* val now contains the remainder */
return rt;
}
static unsigned long dj(val)
unsigned long val;
{
unsigned long result = 0;
unsigned long side = 0;
unsigned long left = 0;
int digit = 0;
int i;
for (i=0; i<16; i++)
{
left = (left << 2) + (val >> 30);
val <<= 2;
if (left >= (side<<1) + 1)
{
left -= (side<<1)+1;
side = (side+1)<<1;
result <<= 1;
result |= 1;
}
else
{
side += side;
result <<= 1;
}
}
return result;
}
static unsigned long thyssen(val)
unsigned long val;
{
register unsigned long result = 0;
register unsigned long side = 0;
register unsigned long left = 0;
int i;
for (i=0; i<sizeof(unsigned long)*4; i++) /* once for every other bit */
{
left = (left << 2) + (val >> 30);
val <<= 2;
if (left >= side*2 + 1)
{
left -= side*2+1;
side = (side+1)*2;
result <<= 1;
result |= 1;
}
else
{
side *= 2;
result <<= 1;
}
}
return result;
}
static unsigned long eyal0(x) /* used for initialization only */
unsigned long x;
{
register unsigned long r, t;
register long e;
if (x & 0xffff0000L)
r = 662 + x / 17916;
else if (x & 0x0000ff00L)
r = 3 + x / 70;
else
r = 2 + x / 11;
do {
t = x / r;
e = (long)(r - t) / 2;
r = (r + t) >> 1;
} while (e);
return (r);
}
static unsigned int sqrtab[256+1] = {0};
static void
set_eyal ()
{
int i;
for (i = 0; i < 256; ++i)
sqrtab[i] = eyal0 (i*256L*256L*256L);
sqrtab[256] = 0xffffU;
}
static unsigned long eyal(x)
unsigned long x;
{
register unsigned int r, t;
register int e;
/* Select the intial guess. Ensure that it is ABOVE the qsrt so that the
* long/short divide will fit into a short (or else we get a divide
* overflow).
*/
if (x >= 0x00010000UL)
if (x >= 0x01000000UL)
if (x >= 0xfffe0001UL)
return (0xffffU);
else
r = sqrtab[(x>>24)+1];
else
r = sqrtab[(x>>16)+1] >> 4;
else if ((unsigned int)x >= 0x0100U)
r = sqrtab[((unsigned int)x>>8)+1] >> 8;
else
return (sqrtab[x] >> 12);
/* Iterate until error is zero.
* It was measured that on randomly large numbers (acid test) we go round
* the loop on average 2.2 times.
*/
do {
t = (unsigned int)(x / r);
e = (int)(r - t) >> 1;
r -= e;
} while (e);
return (t);
}
static unsigned long null(x)
unsigned long x;
{
return (x);
}
static void
test (func, name, n, acid)
unsigned long (*func) ();
char *name;
unsigned long n;
int acid;
{
unsigned long i, x, xx, t, a;
a = 0L;
x = acid ? 0xffffffffUL/n : 1L;
t = GET_TIME;
for (xx = x, i = 0L; i < n; i++, xx += x)
a += (*func) (xx);
t = GET_TIME - t;
printf ("%-10s %7ld %10ld %s\n", name, t, a, acid ? "(acid)" : "");
fflush (stdout);
}
#define TEST(f,n,acid) \
test (f, n, loops, 0); \
if (acid) test (f, n, loops, 1)
int
main (argc, argv)
int argc;
char *argv[];
{
long i, a, t, loops;
if (argc) {
loops = atol (argv[1]);
if (loops <= 0) {
printf ("bad count\n");
exit (1);
}
} else
loops = 10000L;
printf ("calling sqrt() %ld times:\n", loops);
printf ("\n%-10s %7s %10s\n\n", "function", "time", "check");
TEST(null,"null",1);
TEST(rodent,"rodent",1);
TEST(grupe,"grupe",1);
TEST(dj,"dj",1);
TEST(thyssen,"thyssen",1);
TEST(kskelm,"kskelm",0); /* too slow for acid test */
TEST(eyal0, "eyal0",1);
set_eyal ();
TEST(eyal,"eyal",1);
exit (0);
}